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We present a method to generate probability distributions that correspond to metrics obeying partial differ-
ential equations generated by extremizing a functionalJfgmnsu idg, wheregmnsu id is the Fisher metric. We
postulate that this functional of the dynamical variablegmnsu id is stationary with respect to small variations of
these variables. Our approach enables a dynamical approach to the Fisher information metric. It allows one to
impose symmetries on a statistical system in a systematic way.
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I. INTRODUCTION

The Fisher information metric can be calculated once a
probability distribution has been chosen. In this work we
wish to present a method to generate probability distributions
that correspond to metrics obeying Euler-Lagrange partial
differential equations generated by extremizing a functional
Jfgmnsu idg, wheregmnsu id is the Fisher metric. We will pos-
tulate that this functional of the dynamical variablegmnsu id is
stationary with respect to small variations of these variables.
Our approach enables a dynamical approach to the Fisher
information metric. It allows one to impose symmetries on a
statistical system in a systematic way. We will show how to
obtain partial differential equations for the probability distri-
butions. Imposing that the functional remains invariant under
certain transformations of the coordinatesu i will constrain
the class of probability distributions. These symmetries can
also be broken in a consistent way using methods borrowed
from theoretical particle physics and general relativity. As an
example we will require that the functional is covariant un-
der general transformations of the coordinatesu. This will
lead to nonlinear partial differential equations corresponding
to Einstein’s equationsf1g of general relativityssee, e.g.,f2g
for a nice introduction to general relativityd. The requirement
that the functional remains invariant under infinitesimal gen-
eral coordinate transformationsu i →u i8 leads to Bianchi
identities. We shall nevertheless emphasize that variations of
the Fisher information functional to obtain equations of dy-
namics have already been considered in another framework
f3g.

A set of distributionspu=psud parametrized byu i with i
P h1, . . . ,nj is a manifold. The Riemanian metric on this
manifold is the Fisher information metric defined by

gmn =E
X

d4x pusxdS 1

pusxd
]pusxd
]um DS 1

pusxd
]pusxd

]un D . s1d

In the following we shall first briefly introduce the concept
of the Fisher information metric insisting on the connection

to the concepts of Shannon entropy and of the Kullback-
Leibler distance. We shall then introduce the dynamics in the
Fisher information metric. We shall argue that requiring the
covariance of the functionalJfgmnsu idg under general trans-
formations ofu i is natural since the Fisher information met-
ric is itself invariant under reparametrization of the manifold
f4g. We note that the Fisher information metric is also invari-
ant under transformations of the random variablexPX. We
will concentrate on general coordinate invariance, but in
principle, depending on the application, any type of symme-
try could be imposed on the functional.

II. REVIEW OF FISHER INFORMATION METRIC

There are many excellent reviews and books on the Fisher
information metric; a nice introduction can be found inf3g.
Fisher information is a useful concept to judge the quality of
statistical estimates. The Fisher information metric has been
applied in different fields. This concept appears in such dif-
ferent fields as, e.g., instanton calculusf5g, ontology f6g,
models for short distance modifications of space-timef7g, or
econometricsf8g. Symbolic computations of Fisher informa-
tion matrices have also been consideredf9g. We shall give a
brief review of the derivation of the information metricssee
f10,11gd.

A distancedsP1,P2d between two pointsP1 andP2 has to
satisfy the following three axioms:

s1d Positive definiteness:∀ P1,P2, dsP1,P2dù0;
s2d Symmetry:dsP1,P2d=dsP2,P1d;
s3d Triangle inequality:

∀ P1,P2,P3, dsP1,P2d ø dsP1,P3d + dsP2,P3d.
It is often useful to introduce the concept of distance be-

tween elements of a more abstract set. For example, one
could ask what is the distance between two distributions,
between, e.g., the Gaussian and binomial distributions. It is
useful to introduce the concept of entropy as a means to
define distances. In information theory, Shannon entropy
f12g represents the information content of a message or, from
the receiver’s point of view, the uncertainty about the mes-
sage the sender produced prior to its reception. It is defined
as
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− o
i

psidlog psid, s2d

wherepsid is the probability of receiving the messagei. The
unit used is the bit. The relative entropy can be used to define
a “distance” between two distributionspsid and gsid. The
Kullback-Leiblerf13g distance or relative entropy is defined
as

Dsgipd = o
i

gsidlog
gsid
psid

, s3d

where psid is the real distribution andgsid is an assumed
distribution. Clearly the Kullback-Leibler relative entropy is
not a distance in the usual sense: it satisfies the positive
definiteness axiom, but not the symmetry or the triangle in-
equality axioms. It is nevertheless useful to think of the rela-
tive entropy as a distance between distributions.

The Kullback-Leibler distance is relevant to discrete sets.
It can be generalized to the case of continuous sets. For our
purposes, a probability distribution over some fieldsor setd X
is a distributionp:XPR, such that

s1d eXd4x psxd=1,
s2d for any finite subsetS,X, eSd

4x psxd.0.
We shall consider families of distributions, and parametrize
them by a set of continuous parametersu i that take values in
some open intervalM #R4. We use the notationpu to denote
members of the family. For any fixedu, pu :x°pusxd is a
mapping fromX to R. We shall consider the extension of the
family of distributionsF=hpu uuPMj, to a manifoldM such
that the pointspPM are in one to one correspondence with
the distributionspPF. The parametersu of F can thus be
used as coordinates onM.

The Kullback number is the generalization of the
Kullback-Leibler distance for continuous sets. It is defined as

Isgu ipud =E d4x gusxdlog
gusxd
pusxd

. s4d

Let us now study the case of an infinitesimal difference be-
tweenqusxd=pu+evsxd andpusxd:

Ispu+evipud =E d4x pu+evsxdlog
pu+evsxd
pusxd

. s5d

Expanding ine and keepingu andv fixed one finds

Ispu+evipud = uIsp + eipdue=0 + eI8usedue=0

+
1

2
e2I9usedue=0 + Ose3d. s6d

One findsIs0d= I8s0d=0 and

I9s0d = vmFE
X

d4x pusxdS 1

pusxd
]pusxd
]um DS 1

pusxd
]pusxd

]un DGvn.

s7d

We can now identify the Fisher information metricf14g on a
manifold of probability distributions as

gmn =E
X

d4x pusxdS 1

pusxd
]pusxd
]um DS 1

pusxd
]pusxd

]un D . s8d

It has been shown that this matrix is a metric on a manifold
of probability distributionsssee, e.g.,f11gd Corcuera and
Giummolèf4g have shown that the Fisher information metric
is invariant under reparametrization of the sample spaceX
and that it is covariant under reparametrizations of the mani-
fold, i.e., the parameter spacessee, e.g.,f15g for a review.d

III. DYNAMICS OF FISHER INFORMATION
METRIC

Given a distributionpsud, the Fisher information metric
can be calculated using Eq.s8d. Here we wish to approach
this issue from a different point of view and derive the Fisher
information metric from a dynamical perspective. We intro-
duce a functionalJfgmnsu idg. To constrain the functional de-
pendence ongmnsu id, we impose that this functional is invari-
ant under general transformations of the coordinatesu i. As
already mentioned, the Fisher information metric is covariant
under reparametrizations of the manifold, i.e., it is covariant
under general coordinate transformationsu i →u i8. It thus
seems natural to posit that the functionalJfgmng, describing
the dynamics of the metric, is invariant under general coor-
dinate transformationsu i →u i8. We shall first introduce a
few basic quantities which are well known from differential
geometry and the general theory of relativity.

A. Definitions

Differential geometry is the tool we shall be using, just as
in general relativity; the concepts of differential geometry we
need are nicely introduced inf2g. Let us define a few quan-
tities. The affine connection is defined as

Gln
s =

1

2
gnsS ]gmn

]ul +
]gln

]um −
]gml

]un D . s9d

The curvature tensor is given by

Rmnk
l =

]Gmn
l

]uk −
]Gmk

l

]un + Gmn
h Gkh

l − Gmk
h Gnh

l . s10d

It is the only tensor that can be constructed from the metric
tensorgmn and its first and second derivatives. We shall also
need the Ricci tensor, which reads

Rmk = Rmlk
l , s11d

and the curvature scalar is given by

R= gmkRmk. s12d

B. Dynamics

We now have all the necessary tools to introduce the in-
variant functional which describes the dynamics of Fisher
information metric. Because off4g, it seems natural to posit
that the functionalJfgmng, describing the dynamics of the
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metric, is invariant under general coordinate transformations1

u i →u i8. We shall start from the functional:

Jfgmng =
− 1

16p
E ÎgsudRsudd4u, s13d

whereg=detgmn andRsud is the curvature scalar. This func-
tional is a scalar and it is invariant under general coordinate
transformations. Note thatRsud is a scalar and is thus invari-
ant under general coordinate transformations,d4u transforms
as

d4u8 → U ]u8

]u
Ud4u, s14d

andÎgsud transforms as

Îgsu8d → U ]u

]u8
UÎgsud. s15d

The functional is a scalar and thus invariant under general
coordinate transformations.

We assume the least action principle and consider small
virtual fluctuations of the metric. The variation ofJfgmng
with respect togmn leads to

dJfgmng =
1

16p
E ÎgFRmnsud −

1

2
gmnRsudGdgmn d4u,

s16d

whereRmnsud is the Ricci tensor introduced in Eq.s11d and
Rsud is the curvature scalarfsee Eq.s12dg. The requirement
thatJfgmng be invariant with respect to variation of the metric
gmn, dgmn leads to the following partial differential equations
sthe Euler-Lagrange equationsd:

Rmnsud −
1

2
gmnsudRsud = 0. s17d

Contracting Eq.s17d with gmn, one findsR=0; the partial
differential equationssthe Euler-Lagrange equationsd are
thus

Rmnsud = 0, s18d

which correspond to the equations obtained by Einstein in
his theory of general relativityf1g. If the statistical system
under consideration is invariant under reparametrization of
the manifold, the dynamics of the Fisher information metric
is governed by these partial differential equations.

Another interesting case is the one of infinitesimal trans-
formationsu=u+esud. The functionalJfgmng being a scalar
is also invariant under this class of transformation. This
transformation ofu implies the following variation for the
metric:

dgmnsud = − gmlsud
]elsud

]un − glnsud
]elsud
]um −

]gmnsud
]ul elsud.

s19d

The variation of the functionalJ with respect to this trans-
formation leads to the contracted Bianchi identity

FRl
n −

1

2
dl

nRG
;n

= 0, s20d

where the semicolon stands for the covariant derivative
which is defined by

Vm;l =
]Vm

]ul − Gmn
l Vn. s21d

It is possible to introduce more dynamics in the model by
introducing another sourcesthe partial differential equations
being nonlinear, the metric is a source for itself alreadyd for
the metric in the form of a symmetric tensorTmn which trans-
forms as a contravariant tensorfi.e., Tmn8→ s]um /]urd
3s]un /]usdTrsg. The modified functional then becomes

Jfgmng =
− 1

16p
E ÎgsudRsudd4u +

1

2
E ÎgsudTmngmn d4u.

s22d

This functional leads to the partial differential equations

Rmnsud −
1

2
gmnsudRsud + 8pTmnsud = 0. s23d

In the general theory of relativity the caseTmnsud=0 corre-
sponds to empty space. In the statistical system case, the
tensorTmnsud can be used to implement constraints on the
statistical system under consideration. Notice that symme-
tries, in our case general coordinate invariance, can be bro-
ken by generating terms inTmn that are not transforming as
second rank tensors. Imposing symmetries on a system and
breaking these symmetries usually leads to relations between
the parameters of the model. This can be very useful for
applications.

Obviously the functional we have chosen is the simplest
case possible. We have chosen to build the curvature tensor
using only the metric and its first and second derivatives.
One could obviously obtain more complicated models by
taking higher derivatives into account. One could also intro-
duce further dynamics in the model. As an example one can
add a scalarf in the theory and consider the so-called Brans-
Dicke modelf16g

Jfgmng =
− 1

16p
E ÎgsudfsudRsudd4u + fdynamics forfsudg.

s24d

This functional is also a scalar, i.e., it is invariant under
general coordinate transformations, but it leads to a different
set of partial differential equations.1This situation arises in Einstein’s theory of general relativity.
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C. Constraints for the probability distributions

If one inserts the expression for the Fisher information
metric s8d in the partial differential equationss18d obtained
by postulating that the functional is invariant under general
coordinate transformationssnote thatRmn andR are functions
of gmnd, one finds a lengthy and complicated expression. It is
a differential equation for the distributionpusxd. It is best to
first find solutions to the partial differential equations17d or
s18d to obtain the metric constrained by the symmetries of
the problem and then to deduce the constraints for the distri-
bution pusxd. Finding an exact solution to the partial differ-
ential equations17d or s18d is in general very difficult; how-
ever, when the problem under consideration has enough
symmetries, certain solutions are known.

Obviously, a trivial diagonal metric with constant entries
of the types1, . . . ,1d is a solution of the partial differential
equationss17d. One obtains the following constraints for
probability distributions:

E
X

d4x pusxdS 1

pusxd
]pusxd
]um DS 1

pusxd
]pusxd
]um D = 1,

E
X

d4x pusxdS 1

pusxd
]pusxd
]um DS 1

pusxd
]pusxd

]un D = 0 if m Þ n.

s25d

This constraint is trivial and for example Gaussian distribu-
tions satisfy it.

Another example is that of a four-dimensional problem
which is spherically symmetric in three coordinatessisotro-
picd sayu 1, u 2, andu 3 and with a metric that is independent
of the fourth coordinateu 0. In that case a solution was found
by Schwarzschildf17g ssee also, e.g.,f2gd. Using spherical
coordinates for the three coordinatesu 1, u 2, andu 3, the met-
ric is of the form (1−2a / r ,s1−2a / rd−1,r2,r2 sin2 u) for a
four-dimensional problem denoting the coordinates by
st ,r ,u ,fd, and wherea is an integration constant. We thus
obtain the following constraints for a probability distribution:

E
X

d4x
1

pusxdS ]pusxd
]t

D2

= 1 −
2a

r
, s26d

E
X

d4x
1

pusxdS ]pusxd
]r

D2

= S1 −
2a

r
D−1

,

E
X

d4x
1

pusxdS1

r

]pusxd
]u

D2

= r2,

E
X

d4x
1

pusxdS 1

r sinu

]pusxd
]f

D2

= r2 sin2 u,

E
X

d4xpusxdS 1

pusxd
]pusxd
]um DS 1

pusxd
]pusxd

]un D = 0 if m Þ n.

s27d

This example illustrates how to obtain nontrivial constraints
on the probability distributions.

IV. CONCLUSIONS

In this work we have presented a method to generate
probability distributions that correspond to metrics obeying
partial differential equations generated by extremizing a
functionalJfgmnsu idg, wheregmnsu id is the Fisher metric. We
have postulated that this functional of the dynamical variable
gmnsu id be stationary with respect to small variations of these
variables. Our approach enables a dynamical approach to the
Fisher information metric. It allows us to impose symmetries
on a statistical system in a systematic way. We have pre-
sented different models and some solutions to these partial
differential equations. There is a very nice analogy between
the Fisher information metric and Einstein’s theory of gen-
eral relativity. We have argued that since the Fisher informa-
tion metric is covariant under reparametrizations of the
manifold, i.e., it is covariant under general coordinate trans-
formationsu i →u i8, it is natural to posit that the functional
Jfgmng, describing the dynamics of the metric, is invariant

under general coordinate transformationsu i →u i8. This led
us to the functional that determines the dynamics of our
models.

We foresee several application domains such as reasoning
or quantum computing. There is an additional application
that is under investigation and is a classical one for stochas-
tic methodologies: classification in insurancef18g. We expect
to refine the classification process through symmetry consid-
erations. The Fisher information metric is a standard tool to
analyze data. We expect that our work will help to classify
data and verify whether reparametrization symmetries are
present in the data. Our work will also have implications for
thermodynamics, e.g., for the problem leading to Landau’s
diamagnetism where Fisher’s information plays an important
role f19g or for the canonical ensemble entropy for the one-
dimensional quantum harmonic oscillator which has also
been shown to be related to Fisher’s informationf20g.
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