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Dynamics of the Fisher information metric
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We present a method to generate probability distributions that correspond to metrics obeying partial differ-
ential equations generated by extremizing a functialigt”(6')], whereg#”(¢') is the Fisher metric. We
postulate that this functional of the dynamical variait&(¢') is stationary with respect to small variations of
these variables. Our approach enables a dynamical approach to the Fisher information metric. It allows one to
impose symmetries on a statistical system in a systematic way.
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I. INTRODUCTION to the concepts of Shannon entropy and of the Kullback-

Leibler distance. We shall then introduce the dynamics in the

The Fisher information metric can be calculated once q: her inf i tric. We shall that ina th
probability distribution has been chosen. In this work we ISher information metric. We shat argué that requiring the

wish to present a method to generate probability distributiongOvariance of the functionallg**(¢")] under general trans-
that correspond to metrics obeying Euler-Lagrange partiaﬁprmqtlons_ofe' is natural since the Fl_she_r information met-
differential equations generated by extremizing a functionaliC iS itself invariant under reparametrization of the manifold
Jg“"(6")], whereg”¥(8') is the Fisher metric. We will pos- [4]. We note that the Fisher information metric is also invari-
tulate that this functional of the dynamical variagle/(¢') is ~ ant under transformations of the random variabteX. We
stationary with respect to small variations of these variables/ill concentrate on general coordinate invariance, but in
Our approach enables a dynamical approach to the Fish&finciple, depending on the application, any type of symme-
information metric. It allows one to impose symmetries on atry could be imposed on the functional.

statistical system in a systematic way. We will show how to

obtain partial differential equations for the probability distri-

butions. Imposing that the functional remains invariant under  Il. REVIEW OF FISHER INFORMATION METRIC

certain transformations of the coordinatéswill constrain

the class of probability distributions. These symmetries can There are many excellent reviews and books on the Fisher
also be broken in a consistent way using methods borroweghformation metric; a nice introduction can be found[8].
from theoretical particle physics and general relativity. As anFisher information is a useful concept to judge the quality of
example we will require that the functional is covariant un-statistical estimates. The Fisher information metric has been
der general transformations of the coordinatesThis will  applied in different fields. This concept appears in such dif-
lead to nonlinear partial differential equations correspondingerent fields as, e.g., instanton calculs, ontology [6],

to Einstein’s equationgl] of general relativity(see, .9.;12]  models for short distance modifications of space-tiifie or

for a nice introduction to general relativjityThe requirement  econometric$8]. Symbolic computations of Fisher informa-
that the functional remains invariant under infinitesimal gen-tion matrices have also been considef@Hl We shall give a
eral coordinate transformation8 — @' leads to Bianchi brief review of the derivation of the information metiisee
identities. We shall nevertheless emphasize that variations ¢f0,11]).

the Fisher information functional to obtain equations of dy- A distanced(P,, P,) between two point®; andP, has to
namics have already been considered in another framewosdatisfy the following three axioms:

[3]. (1) Positive definitenessd Py, P,, d(Pq,P,) =0;
A set of distributionsp,=p(6) parametrized byy' with i (2) Symmetry:d(P;,P,)=d(P,,P);

e{l,....n} is a manifold. The Riemanian metric on this  (3) Triangle inequality:

manifold is the Fisher information metric defined by 0 Py, Py, P3, d(Py,Py) < d(Py,P3) +d(P,,Ps).

19 1 apx) It is often useful to introduce the concept of distance be-
g V:J d*x pa(X)< pg(x))< Py(X ) (1) tween elements of a more abstract set. For example, one
Uy Po(X) 96 J\pyx) 30" could ask what is the distance between two distributions,

In the followi hall first briefly i q h between, e.g., the Gaussian and binomial distributions. It is
n the following we shall first briefly introduce the concept saf ) o introduce the concept of entropy as a means to

of the Fisher information metric insisting on the connectionyqfine distances. In information theory, Shannon entropy

[12] represents the information content of a message or, from

the receiver’s point of view, the uncertainty about the mes-
*Email address: calmet@physics.unc.edu sage the sender produced prior to its reception. It is defined
"Email address: calmet@ira.uka.de as
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- > p(i)log p(i), (2) _ f " ( 1 ap(,(x))( 1 ap9<x>)
i S = depH(x) po(x) 90* J\pyx) 90" /) ®)

Wh.erep(i).is the probability qf receiving the messagdhe _ It has been shown that this matrix is a metric on a manifold
unit psed is the bit. The relat|ye entropy can be us'ed to defing; probability distributions(see, e.g.[11]) Corcuera and

a “distance” between two distributions(i) and g(i). The i mmole[4] have shown that the Fisher information metric
Kullback-Leibler[13] distance or relative entropy is defined s invariant under reparametrization of the sample spéce
as and that it is covariant under reparametrizations of the mani-

g(i) fold, i.e., the parameter spa¢see, e.g.[15] for a review)
D(glp) = 2 g(i)log = €)
I

p(i)’
I1l. DYNAMICS OF FISHER INFORMATION
where p(i) is the real distribution andgj(i) is an assumed METRIC

distribution. Clearly the Kullback-Leibler relative entropy is Gi distributi o). the Fisher inf . .
not a distance in the usual sense: it satisfies the positive iven a distributionp(6), the Fisher information metric

definiteness axiom, but not the symmetry or the triangle inc&" be calculated using E(). Here we wish to approach

equality axioms. It is nevertheless useful to think of the relathis issue from a different point of view and derive the Fisher

tive entropy as a distance between distributions. information metric from a dynamical perspective. We intro-
The Kuliback-Leibler distance is relevant to discrete setsdUce @ functl(;?a,l?[g/”(q')]. To constrain the functional de-

It can be generalized to the case of continuous sets. For ofendence og“*(6'), we impose that this functional is invari-

purposes, a probability distribution over some figddsej X~ ant under general transformations of the coordin@e#\s

is a distributionp: X € R, such that already mentioned, the Fisher information metric is covariant
(1) [xd* p(x)=1, under reparametrizations of the manifold, i.e., it is covariant
(2) for any finite subseSC X, [sd* p(x)> 0. under general coordinate transformatiofis— 6. It thus

We shall consider families of distributions, and parametrizeSéems natural to posit that the functiodgd,,], describing
them by a set of continuous parametéfshat take values in  the dynamics of the metric, is invariant under general coor-
some open intervayl C R4 We use the notatiop, to denote  dinate transformation®' — 6'". We shall first introduce a
members of the family. For any fixed, py,:x—pyX) is a few basic quantities which are well known from differential
mapping fromX to R. We shall consider the extension of the geometry and the general theory of relativity.
family of distributionsF={p,| # € M}, to a manifoldM such
that the pointp € M are in one to one correspondence with
the distributionsp e F. The parameterg of F can thus be
used as coordinates ow. Differential geometry is the tool we shall be using, just as
The Kullback number is the generalization of the in general relativity; the concepts of differential geometry we

Kullback-Leibler distance for continuous sets. It is defined aieed are nicely introduced [2]. Let us define a few quan-
tities. The affine connection is defined as

A. Definitions

190 Ipy) = f d*x gy(x)log go(X)- (4) re = 1 W(@/ﬂ v @.u_)\)
pf)(x) N7 Eg (96)\ + W - 96" (9)
Let us now study the case of an infinitesimal difference be-_l_he curvature tensor is given by
tweendy(x) =Pg.e,(X) and py(x):
R, —@‘—”—E‘—wr"ﬂ -r7r (10)
(Porallpy) = J A% Pyeey()I0G p??ﬁ)x Lo BT g0 g e e
(4

o ) i _ It is the only tensor that can be constructed from the metric
Expanding ine and keepingy andv fixed one finds tensorg,,, and its first and second derivatives. We shall also
_ , need the Ricci tensor, which reads
1(PgecrllPe) = 1(p + €lP) =0 + €l (€)] =0

1, - Ruc= Ry (12)
" 2 1" ()]0 + O(€). ©) and the curvature scalar is given by
One findsl(0)=1'(0)=0 and R=g"Ry.. (12
1 r?pa(x))< 1 r?pe(x))
I// 0 — M d4 ( v .
0 =v [fx X Pylx) pa(x) 96" Ps(x) 96" v B. Dynamics
7) We now have all the necessary tools to introduce the in-

variant functional which describes the dynamics of Fisher
We can now identify the Fisher information metfitd] on a  information metric. Because ¢#], it seems natural to posit
manifold of probability distributions as that the functional[g,,], describing the dynamics of the
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metric, is invariant under general coordinate transformations

6'— 0. We shall start from the functional:

_?1 f Va(OR(6)d%,

1 (13)

J9..]=

whereg=detg*” andR(6) is the curvature scalar. This func-

tional is a scalar and it is invariant under general coordinate

transformations. Note th&(¢) is a scalar and is thus invari-
ant under general coordinate transformatiati®, transforms
as

a6’
d*e’ — | —|d%, (14)
a0
and yg(6) transforms as
— 00 | ——
g(¢’ — |y . 15
vg(o') — Py Vg(6) (15

The functional is a scalar and thus invariant under gener
coordinate transformations.

We assume the least action principle and consider small

virtual fluctuations of the metric. The variation dfg,,]
with respect tag,,, leads to

1 — 1
&[g,uv] = ET f \’g|:R'uV(0) - EgI-WR(g):| 5g,uvd401
(16)

whereR**(6) is the Ricci tensor introduced in E¢L1) and
R(6) is the curvature scaldsee Eq.(12)]. The requirement
thatJ[g,,,] be invariant with respect to variation of the metric
9. 99, leads to the following partial differential equations
(the Euler-Lagrange equations

R4Y(6) - %g‘”(&)R(e) =0. (17)

Contracting Eq.(17) with g,,, one findsR=0; the partial
differential equations(the Euler-Lagrange equationsre
thus

R*(6) =0, (18)
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o o
50,0 = =907 —g, (0?0 - Bl o)

(19

The variation of the functional with respect to this trans-
formation leads to the contracted Bianchi identity

0, (20

1
{R"V——S‘VR}

2 ”
where the semicolon stands for the covariant derivative
which is defined by

N
— TR TN\
Vi = Py V" (21
It is possible to introduce more dynamics in the model by
introducing another sourdghe partial differential equations
being nonlinear, the metric is a source for itself alreay
the metric in the form of a symmetric tensbt” which trans-

florms as a contravariant tensdi.e., T 5 (9641 96°)

"&(aﬁ”/ 46°)TP7]. The modified functional then becomes

- — 1 —
4 / v 4
/ R(6)d = T™ de.
16 f\g(ﬂ) (6) 0+2J\9(6’) 9,,d"0

(22)

Jg,u.]=

This functional leads to the partial differential equations

RH¥(6) — %g‘“’(ﬂ)R(ﬂ) +87T*"(0) = 0. (23

In the general theory of relativity the ca3é¢”(6)=0 corre-
sponds to empty space. In the statistical system case, the
tensorT#*(6) can be used to implement constraints on the
statistical system under consideration. Notice that symme-
tries, in our case general coordinate invariance, can be bro-
ken by generating terms i that are not transforming as
second rank tensors. Imposing symmetries on a system and
breaking these symmetries usually leads to relations between
the parameters of the model. This can be very useful for
applications.

Obviously the functional we have chosen is the simplest
case possible. We have chosen to build the curvature tensor
using only the metric and its first and second derivatives.
One could obviously obtain more complicated models by

which correspond to the equations obtained by Einstein iaking higher derivatives into account. One could also intro-
his theory of general relativity1]. If the statistical system duce further dynamics in the model. As an example one can

under consideration is invariant under reparametrization 0fdd a scalag in the theory and consider the so-called Brans-
the manifold, the dynamics of the Fisher information metricpicke model[16]

is governed by these partial differential equations.

Another interesting case is the one of infinitesimal trans-
formations 6= 6+ €(6). The functionalJ[g,,] being a scalar
is also invariant under this class of transformation. This
transformation ofé implies the following variation for the
metric:

J[@J,w]:l%T f Vo(6) p(OR(6)d*6 + [dynamics forp(6)].
(24)

This functional is also a scalar, i.e., it is invariant under
general coordinate transformations, but it leads to a different
This situation arises in Einstein's theory of general relativity. ~ set of partial differential equations.
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X )>2 =r?sirf 6

If one inserts the expression for the Fisher information pgX)\rsing ¢ ’
metric (8) in the partial differential equationd8) obtained
by postulating that the functional is invariant under general 1 apy0) 1 ap,0)
coordinate transformatiorigote thatR,, andR are functions f d4xp9(x)( ‘ )( £ .
of g,,), one finds a lengthy and complicated expression. Itis Jx Pe(X) 36" J\pyx) 90
a differential equation for the distributigmy(x). It is best to (27)
first find solutions to the partial differential equati¢ti) or . . _ o _
(18) to obtain the metric constrained by the symmetries off his example illustrates how to obtain nontrivial constraints
the problem and then to deduce the constraints for the distr@N the probability distributions.
bution p[,(x).. Finding an e>.<a$:t solution to the_p.artial differ- IV. CONCLUSIONS
ential equatior(17) or (18) is in general very difficult; how-
ever, when the problem under consideration has enough In this work we have presented a method to generate
symmetries, certain solutions are known. probability distributions that correspond to metrics obeying

Obviously, a trivial diagonal metric with constant entries partial differential equations generated by extremizing a
of the type(1,...,7 is a solution of the partial differential functionalJ[g*”(6")], whereg**(¢') is the Fisher metric. We
equations(17). One obtains the following constraints for have postulated that this functional of the dynamical variable

C. Constraints for the probability distributions f L1 ( 1 apy(x
X

>=O if w#v.

probability distributions: g**(6") be stationary with respect to small variations of these
variables. Our approach enables a dynamical approach to the

f X p (x)( 1 ap(,(x))< 1 ﬂpo(X)> _ Fisher information metric. It allows us to impose symmetries

X ¢ Py(X) 96" pa(x) 96" ’ on a statistical system in a systematic way. We have pre-

sented different models and some solutions to these partial
differential equations. There is a very nice analogy between
4 1 dpyX 1 pf¥))_ - the Fisher information metric and Einstein’s theory of gen-
d*x pa(x) =0 if u# v - . . .
X pPy(x) 6" Ps(x) 96" eral relativity. We have argued that since the Fisher informa-
25 tion metric is covariant under reparametrizations of the
(25) manifold, i.e., it is covariant under general coordinate trans-

This constraint is trivial and for example Gaussian distribu-formationsé'— ¢'", it is natural to posit that the functional
tions satisfy it. J[9,..], describing the dynamics of the metric, is invariant
Another example is that of a four-dimensional problemunder general coordinate transformatiafis— 6'". This led
which is spherically symmetric in three coordinatestro-  us to the functional that determines the dynamics of our
pic) say %, 62, and #° and with a metric that is independent models.
of the fourth coordinaté®. In that case a solution was found  We foresee several application domains such as reasoning
by Schwarzschild17] (see also, e.g[2]). Using spherical or quantum computing. There is an additional application
coordinates for the three coordina®s 62, and 63, the met-  that is under investigation and is a classical one for stochas-
ric is of the form (1-2a/r,(1-2a/r)™,r?,r?sir? 6) for a  tic methodologies: classification in insurarjd8]. We expect
four-dimensional problem denoting the coordinates byto refine the classification process through symmetry consid-
(r,r,6,¢), and wherex is an integration constant. We thus erations. The Fisher information metric is a standard tool to
obtain the following constraints for a probability distribution: analyze data. We expect that our work will help to classify
data and verify whether reparametrization symmetries are
J 4Xi<(9pg(X)>2: 2a 26 present in the data. Our work will also have implications for
x  PsX\ Ir r’ thermodynamics, e.g., for the problem leading to Landau’s
diamagnetism where Fisher’s information plays an important
role [19] or for the canonical ensemble entropy for the one-
J 4 i(ﬁpa(x)f:( _2_04>_1 dimensional quantum harmonic oscillator which has also
X

pPsX)\  ar r been shown to be related to Fisher’s informatign].
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